Studies of Collectors. VIII. The Flotation of the Gallium Ion with Oxine-Type Surfactants

Yoshifumi Koide,* Hisashi Hokonohara, Kuniaki Jinnai, and Kimiho Yamada Department of Applied Chemistry, Faculty of Engineering, Kumamoto University, Kurokami, Kumamoto 860 (Received December 8, 1986)

Oxine-type surfactants(5-alkanoyl-8-quinolinol, R_nOx , n=2, 8, 12, 18) and $R_{12}OOx$ were prepared and used as ion-flotation collectors. Cu^{2+} , Fe^{3+} , Zn^{2+} , and Pb^{2+} were floated with $R_{12}Ox$ around a neutral pH, and the selective removal of Cu^{2+} from the mixture of these four metal ions was observed at pH 1.0. The floatability of Ga^{3+} was also high around the neutral pH, and the selective Ga^{3+} flotation from an Al^{3+} (100 ppm)– Ga^{3+} (20 ppm) mixture was observed by using R_8Ox in the pH regions of 3—4 and 10—13.3 (0.2 M NaOH soln), while $R_{12}Ox$ did not float the Ga^{3+} so much at pH 10—13.3. By the addition of a small amount of R_nPy to the $R_{12}Ox$ or by the solvent sublation, an effective flotation of Ga^{3+} was observed in the pH range of 10—13.3. The Ga^{3+} flotation was superior to the Ga^{3+} extraction in pH 2—4. However, in a strong alkaline region the floatability was lower than the extractability.

The recovery of a metal ion from an acidic or a basic solution is usually difficult even if it is necessary to do so. The recovery by ion flotation from such a solution is considered to be more effective than that by extraction because the metal ion can be floated with the collector as a 1:1 complex, as has been reported in a previous paper.^{1,2)} In recent years, Ga³⁺ has drawn much attention in the electronics market as material of a Ga-As semiconductor. For the purpose of recovering the Ga³⁺ from a Bayer solution, 7-(3,3,5,5tetramethyl-1-vinylhexyl)-8-quinolinol(KELEX 100) has been used as an extraction reagent.3) The KELEX 100 has a large distribution coefficient. However, it is expensive and requires a larger amount for extraction than the collector used in ion flotation. In this connection, 8-quinolinol(Ox) is quite interesting since it is a well known as a chelating reagent, and 8-quinolinol with a long side chain can be expected to be useful as an ion-flotation collector for Ga³⁺, just like alkylated acetylacetone.2) In the present paper, a higher alkanoyl group was introduced to oxine, and the 5-alkanoyl-8-quinolinol(R_nOx , n denotes the carbon number of the alkanoyl group, 2, 6, 8, 12, 18) was used as an ion-flotation collector. The preparation of R_nOx is far easier than that of KELEX 100, and its hydrophile-lipophile balance(HLB) can be regulated by varying the alkyl group or by converting the carbonyl group into an oxime derivative. There are many reports concerning Ga³⁺ extraction.⁴⁾ However, no study of a Ga³⁺ flotation using an oxinetype surfactant has yet been reported as far as the present authors are aware, except for an ion flotation of Ga³⁺, in hydrochloric acid with cationic surfactants.5)

Experimental

Materials. The Ox was obtained from Wako Pure Chemical Industries, Ltd. The R_nOx was prepared by the Fries rearrangement of the alkanoic acid Ox ester.^{6,7)} The preparation of $R_{12}Ox$ was as follows: Equimolar quantities

(0.05 mol) of Ox and dodecanoyl chloride were dissolved in nitrobenzene below 5 °C, and then 0.1 mol of aluminium chloride was added to the nitrobenzene solution. reaction mixture was heated at 80-85 °C for 15-16 h. After cooling to room temperature, 100 cm³ of a 10% HCl solution was added to the reaction mixture, and then the nitrobenzene was steam-distilled. Twenty cm3 of 35% HCl was then poured into the residue. The precipitant, crude $R_{12}Ox$, was filtered and recrystallized with methanol after neutralization. The R₂Ox, R₆Ox, R₈Ox, and R₁₈Ox were obtained by the same procedure. The oxime derivative, R₁₂OOx, was prepared from R₁₂Ox by reference to the phenylglyoxime preparation.8 A 40-cm³ portion of a 70% ethanol solution containing 0.02 mol of R₁₂Ox and 0.1 mol of hydroxylamine was refluxed for 6 h. The solvent was evaporated, and the remainder, R₁₂OOx, was washed with cold water. The yields were: R2Ox 67%, R6Ox 12%, R8Ox 39%, $R_{12}Ox$ 55%, $R_{18}Ox$ 50%, and $R_{12}OOx$ 90%. structures were confirmed by means of their IR spectra (Shimadzu IR-408), ¹H NMR spectra (JEOL JMN-MH-100), and elementary analyses (Yanako CHN Corder MT-3). Mp: R₂Ox, 114.0—115.4 °C; R₆Ox·HCl, 172.0—174.0 °C; R₈Ox, $63.5 - 64.2 \, ^{\circ}\text{C}; \,\, R_{12}\text{Ox}, \,\, 66.8 - 68.5 \, ^{\circ}\text{C}; \,\, R_{18}\text{Ox}, \,\, 83.2 - 85.0 \, ^{\circ}\text{C};$ $R_{12}OOx$, 151.0—152.5 °C. IR(KBr): ν_{CH} 2900, 2850 cm⁻¹, $\nu_{C=O}$ 1670 cm⁻¹, $\nu_{C=C,C=N}$ 1620, 1570, 1510 cm⁻¹. ¹H NMR (CCl₄): δ =0.9 (3H, t, CH₃-C-C-), 1.3 (methylene in alkane), $3.0 (2H, t, -CH_2-CO-), 7.2, 7.8, 8.2, 9.0, 9.8 (5H, -C_9H_5NO).$ R₂Ox Found: C, 70.23; H, 4.77; N, 7.43%; Calcd for C₁₁H₉O₂N: C, 70.59; H, 4.81; N, 7.49%. R₆Ox·HCl Found: C, 64.29; H, 6.37; N, 4.98%; Calcd for C₁₅H₁₈O₂NCl: C, 64.40; H, 6.49; N, 5.01%. R₈Ox Found: C, 74.85; H, 7.67; N, 5.23%; Calcd for C₁₇H₂₁O₂N: C, 75.25; H, 7.80; N, 5.16%. R₁₂Ox Found: C, 76.64; H, 9.00; N, 4.19%; Calcd for C₂₁H₂₉O₂N: C, 77.02; H, 8.93; N, 4.28%. R₁₈Ox Found: C, 78.45; H, 10.27; N, 3.49%; Calcd for C₂₇H₄₁O₂N: C, 78.78; H, 10.04; N, 3.40%. R₁₂OOx Found: C, 73.20; H, 8.73; N, 7.90%; Calcd for C₂₁H₃₀N₂O₂: C, 73.64, H, 8.83; N, 8.18%.

The surface tensions of a R_nOx solution and a $R_{12}OOx$ solution were measured by the use of a Du Noüy surfacetension balance. The surface tensions of aqueous solutions of R_8Ox , $R_{12}Ox$, and $R_{12}OOx$ at their critical micellar concentrations (cmc) are 47 dyn cm⁻¹ (1 dyn=1×10⁻⁵N) for 4×10⁻⁴ M (1 M=1 mol dm⁻³) R_8Ox at pH 0.6, 39 dyn cm⁻¹ for 2×10⁻⁴ M $R_{12}Ox$ at pH 0.6, and 41 dyn cm⁻¹ for

 7×10^{-4} M R₁₂OOx at pH 0.6, 46 dyn cm⁻¹ for 4×10^{-3} M R₈Ox at pH 13, and 44 dyn cm⁻¹ for 4×10^{-3} M R₁₂Ox at pH 13. R₁₈Ox was scarcely soluble in water. The concentrations of these surfactants were kept below their cmc in the following ion flotation.

Apparatus and Procedures. The removals of seven metal ions (Ga³⁺, Al³⁺, Fe³⁺, Cu²⁺, Zn²⁺, Pb²⁺, and Ag⁺) were measured by the methods of ion flotation, solvent sublation, and extraction. The apparatus and procedures of ion flotation and extraction were the same as those previously reported.¹⁾ The apparatus used in the solvent sublation was the same as that used in the ion flotation; a cell made up of a glass cylinder containing 500 cm3 of an aqueous solution (Cu2+)-25 cm3 of benzene or 200 cm3 of an aqueous solution (Ga^{3+}) -50 cm³ of benzene. The determined amount of R_nOx was added to the aqueous solution, the pH of which had been adjusted to the desired value. Nitrogen gas was introduced through a sintered-glass disk (No.4) into the aqueous solution. The rate of gas flow was kept at 36- $40 \text{ cm}^3 \text{ s}^{-1}$. The concentrations of metal ions were determined with an atomic-absorption spectrophotometer (Hitachi 170-30).

The floatabilities of the metal ions in the ion flotation and in the solvent sublation or the extractabilities of the metal ions were calculated using this equation:

$$F(\%) = \frac{a_0 - a_1}{a_0} \times 100$$

where a_0 and a_1 denote the initial and final metal-ion concentrations in a solution respectively.

Results and Discussion

Flotation and Extraction from an Acidic Solution. The series of R_nOx's were used as ion-flotation collectors and extraction reagents in the acidic pH range. The effect of the removals of Cu²⁺, Fe³⁺, and Zn²⁺ are shown in Fig. 1. R_nOx bearing a long alkyl chain floated the metal ions. The Cu²⁺ flotation in the pH regions of 1—2 was more effective than the Fe³⁺ or Zn²⁺ flotation and than the metal extractions

in that pH region. The floatabilities varied with the difference in the alkyl-chain length, resulting in the variation of their surface activities (HLB). Pb2+ and Ag+ didn't float in this acidic pH range, but these five metal ions were floated with R_nOx around a neutral pH. They are not shown in the figures except for Cu²⁺. The Cu²⁺ floatabilities by using 4×10⁻⁵ M KELEX 100 were 0% at pH 1.0, 14% at pH 2.0, and 18% at pH 3.0. On the other hand, by using R_nOx the Cu²⁺ and Fe3+ were extracted into the benzene layer above the pH values of 3 and 5 respectively, and their extractabilities for the solution containing equimolar amounts of R_nOx and metallic ions were almost independent of the alkyl-chain length. It is likely that the extractabilities are affected by the alkyl group in the presence of an excess of R_nOx . Figure 2 shows the Cu2+ flotation and the Cu2+ extraction by using a molar amount of R_nOx double that of Cu²⁺. The

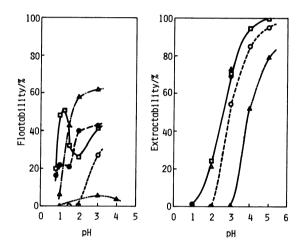


Fig. 2. Effects of alkyl-chain length on Cu^{2+} floatability and Cu^{2+} extractability. Initial concn: Cu^{2+} 1×10^{-5} M, R_nOx 2×10^{-5} M. \triangle : Ox, O: R_2Ox , \triangle : R_8Ox , \square : $R_{12}Ox$, \bigcirc : $R_{18}Ox$.

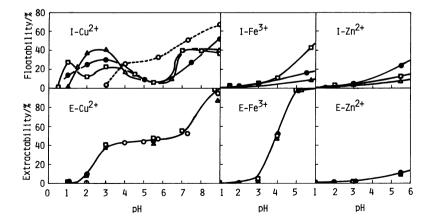


Fig. 1. Ion flotation and extraction. Initial concn: metal ion 1×10^{-5} M, R_nOx 1×10^{-5} M. I: ion flotation, E: extraction; O: R_2Ox , Δ : R_8Ox , \square : $R_{12}Ox$, \blacksquare : $R_{18}Ox$.

R_nOx bearing a long alkyl chain was far superior to the R₂Ox or Ox. The stability constants of Ox complexes are high ($Cu^{2+} \log K_{ML}$ 12.2, $\log K_{ML_2}$ 11.2, Fe³⁺ log K_{ML} 12.3, log K_{ML_2} 11.3).20 The stability constants of the R_nOx complexes are presumed to be similar to the values of the Ox complexes. Therefore, the Cu²⁺ and Fe³⁺ could be complexed with equimolar R_nOx at a low concentration and a low pH. The 50% (Cu²⁺) and 100% (Fe³⁺) extractabilities in acidic pH indicate that the R_nOx/Cu²⁺ ratio in the extracted complex is 2:1 and the R_nOx/Fe^{3+} ratio is 1:1. These ratios were also confirmed by the method of continuous variation; e.g., for the R₁₂Ox-Cu complex, the concentration in benzene was measured with the absorbance at λ_{max} 415 nm. Their calculated HLB values, based on the Oda equation, 9) were (R₁₂Ox)₂-Cu 3.5 and R₁₂Ox-Fe (OH)₂ 6 respectively, so that they would have large distribution coefficients¹⁰⁾ and be extracted.

Then, the difference in the method of adding the collector in ion flotation was examined at pH 1.0, as may be seen in Fig. 3. A remarkable difference in the Cu²⁺ floatabilities was observed when 3-5×10⁻⁵ M R₁₂Ox was added to the 1×10⁻⁵ M Cu²⁺-mixed solution. The step-by-step addition was more effective than adding everything at one time, and the Cu²⁺ could be floated more selectively from a mixture of Cu²⁺, Fe³⁺, Zn²⁺, and Pb²⁺ by the former method. The R₁₂Ox/Cu²⁺ ratio in the scum was confirmed by the elementary analyses to be 1:1 (Found: C, 61.57; H, 7.57; N, 3.01%; Calcd for C₂₁H₂₈O₂N·Cu·H₂O: C, 61.66; H, 7.58; N, 3.44%). The complexes at pH 1.0 were surface-active $(R_nOx-M)^{m+}$, and their calculated HLB values⁹⁾ were $(R_{12}Ox-Cu)^+$ 9 and $(R_{12}Ox-Fe)^{2+}$ 15. Therefore, the hydrophobic Cu²⁺ complex would be floated selectively, and the hydrophilic Fe3+

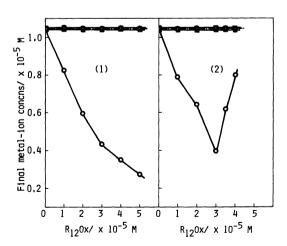


Fig. 3. Selective removal of Cu^{2+} at pH 1.0. Initial concn of metal ions mixture: Cu^{2+} , Fe^{3+} , Zn^{2+} , and Pb^{2+} 1×10⁻⁵ M, respectively. (1) Stepwise addition of $R_{12}Ox$. (2) Additions of $R_{12}Ox$ at a time. O: Cu^{2+} , \blacksquare : Fe^{3+} , Δ : Zn^{2+} , \blacktriangle : Pb^{2+} .

complex thus produced would disperse the (R₁₂Ox-Cu)⁺ complex into the solution. Actually, an excellent Cu²⁺-selectivity from the mixture of all the metal ions except for Fe³⁺ was observed even when 3—5×10⁻⁵ M R₁₂Ox was added all at one time. These results were similar to that shown in Fig. 3-(1) and so are not shown in the figures. The scum (R₁₂Ox-Cu complex) was dissolved in 20 cm³ of benzene, and the benzene solution was shaken with 20 cm³ of a 1 M or 3 M HCl solution. The recoveries of R₁₂Ox from the benzene layer were 100% with 1 M HCl and 93% with 3 M HCl, while those of Cu²⁺ from the aqueous layer were 96% with 1 M HCl and 100% with 3 M HCl.

Ga³⁺ Flotation and Extraction from an Acidic Solution. The recovery of Ga³⁺ (20 ppm) was further examined. Figure 4 shows the pH effect on the floatability of Ga³⁺ from equimolar solutions (2.87×

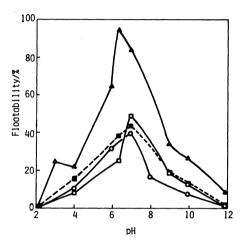


Fig. 4. Effect of pH on Ga³+ flotation. Initial concn: $Ga^{3+} 2.87 \times 10^{-4} M(20 \text{ ppm}), R_nOx 2.87 \times 10^{-4} M.$ O: R_2Ox , \triangle : R_8Ox , \square : $R_{12}Ox$, \blacksquare : $R_{12}Oox$.

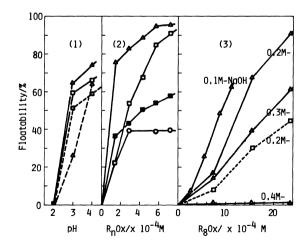


Fig. 5. Ga³⁺ flotation. Initial concn: Ga³⁺ 2.87×10⁻⁴ M(20 ppm). (1) R_nOx 5.74×10⁻⁴ M; \triangle : extraction using R_8Ox , \square : extraction using $R_{12}Ox$. (2) pH 7. (3) 0.1—0.4 M NaOH soln. O: R_2Ox ; \triangle : R_8Ox , \square : $R_{12}Ox$, \blacksquare : $R_{12}Ox$.

10⁻⁴ M) of R_nOx and Ga³⁺. A high floatability was observed around the neutral pH. R₈Ox was the most effective collector among the R_nOx homologues. The Ga³⁺ floatability increased as the concentration of R_nOx increased, as is shown in Fig. 5: The floatabilities for a 2.87×10^{-4} M Ga³⁺ solution were 65—72% in the pH regions of 3—4 with 5.74×10^{-4} M R₈Ox, and 96% at pH 7 with 5.7-7.2×10-4 M R₈Ox. However, the Ga³⁺ floatability when R₂Ox or Ox was used was low: 40% at pH 7 with R2Ox and 0% in the pH region of 0-14 with 0-5×10-5 M Ox. The Ga³⁺ flotation at pH 3 was surperior in efficiency to the Ga³⁺ extraction at pH 3, but they were similar at pH 4. Furthermore, the Ga3+ was found to float selectively from a Ga3+-Al3+ mixture in pH 3-4, but it was floated simultaneously with Al³⁺ at pH 7, as is shown in Fig. 6. The stability constants ($\log K_{ML}$) of the Ox and the 8-hydroxy-5-quinolinesulfonic acid (OxS) complexes are Ox-Ga 14.51,11) OxS-Ga 13.56,12) and OxS-Al The values of the R_nOx complexes are 9.76.12)

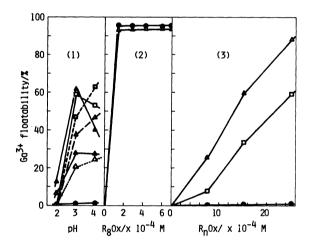


Fig. 6. Ga³⁺ selectivity from Ga³⁺-Al³⁺ mixture. Initial concn of metal ions mixture: Ga³⁺ 2.87×10⁻⁴ M(20 ppm)-Al³⁺ 3.71×10⁻³ M(100 ppm). (1) R_nOx 5.74×10⁻⁴ M; —— \triangle ——: extraction using R_8Ox , —— \square ——: extraction using $R_{12}Ox$. \triangle : ion flotation using 2.87×10⁻⁴ M R_8Ox , —— \triangle ——: extraction using 2.87×10⁻⁴ M R_8Ox . (2) pH 7. (3) 0.2 M NaOH soln. \triangle : R_8Ox , \square : $R_{12}Ox$, \blacksquare : floatability of Al³⁺ by using R_8Ox .

presumed to be similar to those of the Ox and OxS complexes.⁹⁾ Therefore, the more stable Ga³⁺ must be floated selectively. The Ga²⁺ flotation and selectivity in the alkaline region will be discussed in the next section.

Flotation and Extraction from an Alkaline Solution. The Ga³⁺ floatabilities of 2.87×10⁻⁴ M Ga³⁺ at pH 10 were similar to those at pH 4, while the floatabilities at pH 11 were 63% with 5.74×10⁻⁴ M R_8Ox and 94% with 8.61×10^{-4} M R_8Ox . The amount of R₈Ox remaining after the Ga³⁺ flotation was below 10⁻⁵ M. Therefore, the R₈Ox/Ga³⁺ ratio in the scum was determined to be 2:1 from the elementary analyses{Found (pH 11): C, 65.61; H, 6.72; N, 5.05%; Found (pH 4): C, 66.76; H, 6.74; N, 4.70%; Calcd for R₈Ox-Ga: C, 60.04; H, 5.93; N, 4.12%; Calcd for (R₈Ox)₂-Ga: C, 66.90; H, 6.61; N, 4.59%; Calcd for $(R_8Ox)_3$ -Ga: C, 69.54; H, 6.87; N, 4.77%}. Consequently, the equimolar R₈Ox is considered to float. The Ga³⁺ flotation from a strong alkaline solution is shown in Fig. 5-(3). The Ga3+ could be floated from the alkaline solution with a large excess of R₈Ox or $R_{12}Ox$. However, the R_nOx became insoluble in a strong NaOH solution (R8Ox above 0.4 M, R12Ox above 0.3 M), while no flotation effect was observed when R₆Ox was used because of the soluble Ga³⁺ complex (yellow green). The Ga3+ flotation using KELEX 100 was less effective than those using R₈Ox and R₁₂Ox: The Ga³⁺ floatabilities from the 2.87×10⁻⁴ M (20 ppm) Ga³⁺ in a 0.1 M NaOH solution were 13% with 8.6×10^{-4} M KELEX 100, 31% with 17.2×10^{-4} M, 52% with 25.8×10^{-4} M, and 70% with 34.4×10^{-4} M. The R_nOx used as a collector was regenerated by the treatment of the scum with 5 M HCl, resulting in the precipitation of R_nOx and a Ga^{3+} solution. The Ga^{3+} selectivity from the Ga3+-Al3+ mixture in a 0.2 M NaOH solution is shown in Fig. 6-(3). The Ga³⁺ was also found to float selectively. The complexes produced in the alkaline solution were presumed to be something like the hydroxo-Ga complexes, $\{(R_nOx)_2 Ga(OH)_2$, because the hydrolysis constants (pK_n) for the aqua-Ga complexes were pK_1 2.8-2.9, pK_2 3.5-4.4, pK_3 4.5, pK_4 —, pK_5 10.3, and pK_6 11.7.13) The flotation effect was evaluated first by the degree of the formation of a surface-active complex. The HLB

Table 1. HLB Values of R_nOx Complexes^{a)} in Alkaline Soln

Ligand	$L^{b)}$ -Ga(OH) ₂ L-Al(OH) ₂	L-CuOH	L ₂ -GaOH L ₂ -AlOH	$\begin{array}{c} (L_2\text{-}Ga)^+\!\cdot\!\{L_2\text{-}Ga(OH)_2\}^-\\ (L_2\text{-}Al)^+\!\cdot\!\{L_2\text{-}Al(OH)_2\}^- \end{array}$
Ox	13	10	9	13
R_2Ox	11	8	7	10
R ₆ Ox	8	6	5	8
R ₈ Ox	7	5	5	7
R ₁₂ Ox	6	4	4	5
R ₁₂ OOx	9	8	8	9

a) The HLB values based on the Oda equation. 9) b) L indicates ligand.

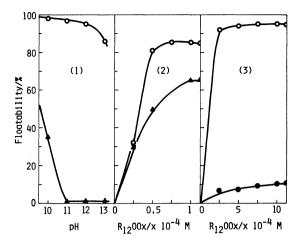


Fig. 7. Flotation of metal ion and coflotation with Cu^{2+} ion. (1) Cu^{2+} flotation: Cu^{2+} 1×10^{-4} M. $R_{12}OOx$ 3×10^{-4} M; Fe^{3+} flotation: Fe^{3+} 1×10^{-4} M, $R_{12}OOx$ 3×10^{-4} M. (2) Fe^{3+} – Cu^{2+} coflotation: 0.5×10^{-4} M Fe^{3+} – 0.5×10^{-4} M Cu^{2+} ; pH 13. (3) Ga^{3+} – Cu^{2+} coflotation: 2.87×10^{-4} M Ga^{3+} – 1.5×10^{-4} M Cu^{2+} ; pH 12. O: Cu^{2+} , \triangle : Fe^{3+} , \bigcirc : Ga^{3+} .

values of these complexes are in the range of 4-13, as is indicated in Table 1; the HLB value of the Ga3+ complex is the same as that of the Al3+ complex. However, the Ox, R₂Ox, and R₆Ox complexes were surface-inactive in spite of their HLB values being in the range of 5—13; the surface tension of a 2.87×10^{-4} M R₆Ox solution was 60 dyn cm⁻¹ at 15 °C. sumably they could not float the Ga3+ because of their structural characteristics. The reaction rate of the complex formation is considered to be another factor in the selectivity of ion flotation. Since the reaction rates of Al3+ with general chelating agents are known to be slow,14) the Ga3+ selectivity from a Ga3+-Al3+ mixture was examined after a sufficient time for the formation of the Al3+ complex. However, the Ga3+ was floated selectively at 60 °C or after it had stood for 24 h; therefore, the complex stability was considered to be a dominant factor in the Ga3+ selectivity. On the other hand, Cu2+ was effectively floated with the RnOx or R₁₂OOx below pH 13, but Fe³⁺ was not effectively floated above pH 10, as is shown in Fig. 7-(1). In this connection, we made coflotation experiments on the Fe³⁺-Cu²⁺ and Ga³⁺-Cu²⁺ systems in order to study the possibility of enhancing the floatabilities of Fe³⁺ and Ga³⁺ by the addition of Cu²⁺. The Fe³⁺-Cu²⁺ coflotation was done at pH 10 and 13, and the Ga³⁺-Cu²⁺ coflotation was done at pH 10 and 12. The floatability of 5×10⁻⁵ M Fe³⁺ was 20% at pH 10 with 10-4 M R₁₂Ox in the absence of Cu²⁺ and 80% in the presence of 5×10⁻⁵ M Cu²⁺. The Fe³⁺-Cu²⁺ coflotation at pH 13 was also effective, as is shown in Fig. However, the Ga3+-Cu2+ coflotation was ineffective; the floatabilities of 2.87×10⁻⁴ M Ga³⁺ at pH 10 in the absence of Cu²⁺ and in the presence of

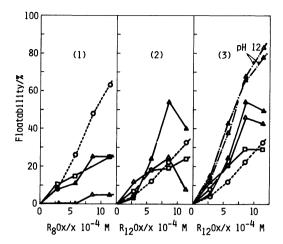


Fig. 8. Flotation of Ga^{3+} using $R_{12}Ox-R_nPy$ at pH 13. Initial concn: Ga^{3+} 2.87×10⁻⁴ M(20 ppm). (1) R_nPy 1.44×10⁻⁴ M. (2) R_nPy 1.44×10⁻⁴ M. (3) R_nPy 2.87× 10⁻⁴ M. Δ : $R_{12}Py$, \triangle : $R_{18}Py$, \square : $R_{22}Py$, \bigcirc : without R_nPy .

 5×10^{-4} M Cu²⁺ were 55 and 43% respectively with 5×10^{-4} M R₁₂Ox, and 99 and 58% respectively with 10^{-3} M R₁₂Ox. The floatabilities at pH 12 when R₁₂OOx was used were also high for Cu²⁺, but low for Ga³⁺, as is shown in Fig. 7-(3). Furthermore, the Ga³⁺ selectivity from a Ga³⁺ (2.87×10⁻⁴ M)-Al³⁺ (3.70×10⁻³ M)-Cu²⁺(5×10⁻⁴ M) mixture was found to be less: The floatabilities of metal ions at pH 10 when 15×10^{-4} M R₁₂OOx was used were Ga³⁺ 66%, Al³⁺ 49%, and Cu²⁺ 99%. The difference between the floatabilities of Fe³⁺ and Ga³⁺ may be due to the hydrophilic property caused by their hydrolysis.

Flotation with Cationic Surfactants. Ga3+ in an alkaline solution exists as an anionic polyhydroxo species, Ga $(OH)_{x(=4,5,6)}^{3-x}$, and the R_nOx probably forms an anionic hydroxo-gallium complex, e.g., $\{(R_nOx)_2-Ga(OH)_2\}^{-.13}$ Therefore, the effects of the addition of a cationic surfactant were examined. Four N-alkylpyridinium bromides (R_n Py, n=8, 12, 18, 22) were prepared by the procedure of Knight et al.,15) and their structures were identified by means of their melting points and the results of elementary analyses. The flotation of Ga^{3+} with the cationic R_nPy was examined in the absence of R_nOx . However, the R_8Py , R₁₂Py, R₁₈Py, and R₂₂Py were not useful for Ga³⁺ flotation in the alkaline region. Then, both surfactants, the chelating R_nOx and the cationic R_nPy , were added to the Ga³⁺ solution. The Ga³⁺ floatabilities when R₈Ox-R_nPy was used were less than those without $R_n Py$; in the absence of the $R_n Py$, the R₈Ox was more effective than R₁₂Ox, as is shown by the dotted line in Fig. 8. On the other hand, the Ga^{3+} floatabilities when $R_{12}Ox-R_nPy$ was used became higher than that without R_nPy, but were steeply lowered in a high concentration of R₁₂Ox, as is shown in Fig. 8-(2). The $R_{12}Ox$ in the presence of

 $2.87 \times 10^{-4} \,\mathrm{M}$ R_nPy enhanced the Ga³⁺ floatability more {Fig. 8-(3)}. These floatabilities varied a little with the difference in the alkyl-chain length of R_nPv. The cationic $R_n P_v$ was considered to be attracted to the anionic R_nOx -gallium complex or to the anionic R_nOx , resulting in a green suspension. Consequently, the colloidal R₁₂Ox-Ga complex may be floated with the surface-active $R_n P_y$, but the Ga^{3+} floatability would be lowered in a high concentration of R₁₂Ox (above 3-fold molar to Ga3+) because of the complexation of R_n Py with the excess R_{12} Ox. On the other hand, the hydrophilic R₈Ox-Ga complex should be solubilized by the surface-active R_n Py. In addition, the more hydrophilic R_nOx, R₂Ox-R_nPy, R_6Ox-R_nPy , and $R_{12}OOx-R_nPy$ did not show any flotation effect(these data are not shown in Fig. 8). The selective flotation of the Ga³⁺ at pH 13 from a Ga^{3+} (2.87×10⁻⁴ M, 20 ppm)-Al³⁺ (3.70×10⁻³ M, 100 ppm) mixture was also done, as is shown in Fig. 9. A highly selective flotation of Ga3+ at pH 13 is, of course, observed with the increase in the $R_{12}Ox-R_nPy$ concentration, as is shown in Fig. 9-(2), (3); the floatabilities of metal ions when 11.5×10-4 M R₁₂Ox-5.76×10-4 M R₂₂Py was used were Ga³⁺ 71% and Al³⁺ 0%. The Ga³⁺ selectivities when R₈Ox-R_nPy was used were almost identical with those without $R_n P_y$, as is shown in Fig. 9-(1). Because the cationic R_n Py ions combine with the large excess of Al(OH) $_{x(=4,5,6)}^{3-x}$ ions, the Ga3+ floatabilities in the Ga3+-Al3+ mixture are unaffected by the presence of $R_n Py$. The Al³⁺ did not float with any of the collectors used because of its lower stability.

Solvent Sublation. Solvent sublation is known as a nonfoaming, absorptive, bubble-separation process. 10) Trace amounts of metal ions were concentrated, by means of ion flotation with collectors, and

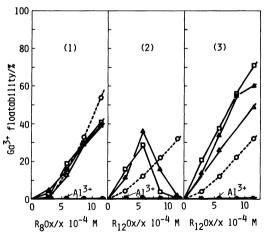


Fig. 9. Selectivity using R_nOx-R_nPy at pH 13. Initial concn of metal ions mixture: Ga^{3+} 2.87×10⁻⁴ M(20 ppm)-Al³⁺ 3.70×10⁻³ M(100 ppm). (1) R_nPy 1.44×10⁻⁴ M. (2) R_nPy 1.44×10⁻⁴ M. (3) R_nPy 4.31×10⁻⁴ M. Δ : $R_{12}Py$, Δ : $R_{18}Py$, \square : $R_{22}Py$, O: without R_nPy , \bullet : Al³⁺ floatability by using $R_nOx-R_{18}Py$.

then the ion-associates were dissolved in an organic solvent for their analyses, e.g., for Cr6+, with diphenylcarbazide-sodium dodecyl sulfate;16) for Fe3+, with 1, 10-phenanthroline-sodium dodecyl sulfate, 17) and for Ge, with phenylfluorone-cyclohexane. 18) The collectors used in such flotation are generally a combination of complexing agents and oppositely charged surfactants or basic dyes.¹⁹⁾ However, a chelating surfactant has not yet been applied to a solvent-sublation collector.²⁰⁾ Therefore, the R_nOx was examined as a solvent-sublation collector. Figure 10 shows the solvent sublation from an acidic (Cu2+) and a basic solution (Ga3+). The Cu2+ floatability when R₁₂Ox was used at pH 1.0 varied with the aeration time and with the acid species. The Cu2+ could be floated initially as a 1:1 complex, and then the composition of the complex sublated, as well as that of that extracted, finally became 2:1. formation of the Cu2+ complex with a small amount of R₁₂Ox in a HCl solution was more difficult than that in a HNO₃ solution because of the formation of the stable Cu2+-chloro complex.2) The Ga3+ floatabilities by solvent sublation in the alkaline region (0.1, 0.3, 0.4 M NaOH) were superior to those by ion flotation, but inferior to the Ga3+ extractabil-Thus, the R_nOx used as a solvent-sublation collector in the alkaline region showed properties intermediate between those of the ion-flotation The solvent collector and the extraction reagent. sublation using KELEX 100 was similar to that using R₈Ox, but the extraction was less: the floatabilities from the 2.87×10^{-4} M (20 ppm) Ga³⁺ in a 0.1 M NaOH solution were 45—47% with 8.6—14.3×10⁻⁴ M KELEX 100, while the extractabilities were 25% with

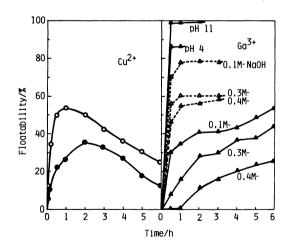


Fig. 10. Solvent sublation. Cu²⁺ Initial concn: Cu²⁺ 1×10^{-5} M in acidic soln. R₁₂Ox 2×10^{-5} M; volume: aq (500 cm^3) -benzene(25 cm³). O: 0.1 M HNO₃, • 0.1 M HCl. Ga³⁺ Initial concn: Ga³⁺ 2.87×10^{-4} M(20 ppm) in 0.1-0.4 M NaOH soln and in soln of pH 4 or 11, R₈Ox 8.61×10^{-4} M; Volume: aq(200 cm³)-benzene(50

cm³). \triangle : Solvent sublation. \triangle : extraction.

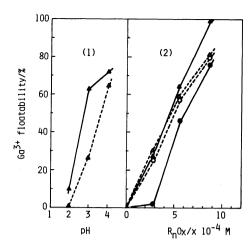


Fig. 11. Solvent sublation of Ga³+. Initial concn: Ga³+ 2.87×10⁻⁴ M(20 ppm). (1) R₈Ox 5.74×10⁻⁴ M.
▲: Solvent sublation, Δ: extraction. (2) pH 11. ▲: Solvent sublation using R₈Ox, Δ: extraction using R₈Ox, Φ: solvent sublation using R₁₂Ox, O: extraction using R₁₂Ox.

 8.6×10^{-4} M and 50% with 28.7×10^{-4} M. However, the gelation of a kerosene solution of R_nOx took place upon Ga^{3+} extraction from a Bayer solution, and KELEX 100 was still effective: 58% with 0.27 M KELEX 100 in kerosene (KELEX 100/ $Ga^{3+}\approx80$). Therefore, the solvent sublation of Ga^{3+} using R_8Ox was superior to the Ga^{3+} extraction in the pH region from 3 to 11, as is shown in Fig. 11. As regards the solvent sublation for the Ga^{3+} -Al³⁺ system, the Ga^{3+} was floated selectively from the mixture at pH 3—4 and pH 11, but the Ga^{3+} and Al³⁺ were floated simultaneously in pH 5—10. Such a behavior of Ga^{3+} flotation from the mixture was similar to that for the solution of Ga^{3+} alone.

Thus, R_8Ox and $R_{12}Ox$ were confirmed to be more effective collectors than KELEX 100 for Cu^{2+} in an acidic solution and for Ga^{3+} in a basic solution and to favour the selective ion flotation of Cu^{2+} from a metalion mixture and that of Ga^{3+} from a $Ga^{3+}-Al^{3+}$ mixture. These results prove that a useful collector in an acidic or a basic solution can be designed by the selection of a stronger complexing ligand and the regulation of its HLB, as well as by the preparation of a usual collector.¹⁾

References

- 1) Y. Koide, S. Sato, and K. Yamada, Bull. Chem. Soc. Ipn., 59, 715 (1986).
- 2) H. Freiser and Q. Fernando, "Ion-heiko," translated by T. Fujinaga and E. Sekido, Kagakudojin (1970), p. 254.
- 3) J. Helgorsky and A. Leveque, German Patent 2530880 (1976); French Patent 2307047 (1976); German Patent 2743475 (1978); French Patent 2397464 (1979).
- 4) T. Sato, T. Nakamura, M. Yabuta, and H. Oishi, *Chem. Lett.*, **1982**, 591; K. Hagiwara, M. Nakane, Y. Osumi, E. Ishii, and Y. Miyake, *Bunseki Kagaku*, **10**, 1376 (1961).
- 5) T. Nozaki, K. Kato, M. Uchida, M. Doi, N. Mise, and Y. Soma, *Bunseki Kagaku*, 32, 145 (1983).
 - 6) D. V. Banthorpe, Chem. Rev., 70, 295 (1970).
- 7) G. Manecke and H. P. Aurich, *Makromol. Chem.*, **133**, 83 (1970).
- 8) J. V. Burakevich, A. M. Love, and G. P. Volpp, *J. Org. Chem.*, **36**, 1 (1971).
- 9) R. Oda and K. Teramura, "Kaimen-kasseizai No Gosei To Sonooyo," Maki Shoten, Tokyo (1962), p. 501; Y. Koide, K. Izumi, K. Okuzono, and K. Yamada, *Nippon Kagaku Kaishi*, 1980, 742.
- 10) Y. Koide, S. Kitaoka, and K Yamada, *Bull. Chem. Soc. Jpn.*, **58**, 2456 (1985).
- 11) L. G. Sillen and A. E. Martell, "Stability Constants of Metal Complexes, Suppl. 1," The Chemical Society, London (1964), p. 1971.
- 12) T. Nishikawa, K. Hiraki, K. Morishige, and S. Katagi, *Bunseki Kagaku*, **26**, 365 (1977).
- 13) J. Burgess, "Metal Ions in Solution," John Wiley & Sons. New York (1978), p. 259.
- 14) K. Ueno, "Kireto-tekitei Hou," Nankoudou (1972), p. 246.
- 15) G. A. Knight and B. D. Shaw, J. Chem. Soc., 1938, 682.
- 16) M. Aoyama, T. Hobo, and S. Suzuki, *Anal. Chim. Acta*, **129**, 237 (1981).
- 17) K. Yamada, M. Aoyama, T. Hobo, and S. Suzuki, Bunseki Kagaku, 33, 99 (1984).
- 18) J. Shida, Y. Takahashi, K. Ojima, and T. Matsuo, Bunseki Kagaku, 33, E143 (1984).
- 19) Z. Marczenko and K. Kalinowski, *Anal. Chim. Acta.*, **153**, 219 (1983).
- 20) R. Lemlich, "Adsorptive Bubble Separation Techniques," Academic Press, New York and London (1972), p. 145.